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Abstract—Online service systems have been increasingly
popular and important nowadays. Reducing the MTTR
(Mean Time to Restore) of a service remains one of
the most important steps to assure the user-perceived
availability of the service. To reduce the MTTR, a common
practice is to restore the service by identifying and apply-
ing an appropriate healing action. In this paper, we present
an automated mining-based approach for suggesting an
appropriate healing action for a given new issue. Our
approach suggests an appropriate healing action by adapt-
ing healing actions from the retrieved similar historical
issues. We have applied our approach to a real-world and
large-scale product online service. The studies on 243 real
issues of the service show that our approach can effectively
suggest appropriate healing actions (with 87% accuracy)
to reduce the MTTR of the service. In addition, according
to issue characteristics, we further study and categorize
issues where automatic healing suggestion faces difficulties.

Keywords-Online service system; healing action; issue
repository; incident management

I. INTRODUCTION

Online service systems such as online banking, e-
commerce, and email services have been increasingly
popular and important nowadays, with an increasing
demand on the availability of services provided by
these systems. While significant efforts have been made
to strive for keeping services up continuously, studies
[1] on a sample of hosts have shown that daily and
weekly service downs still appear commonly in online
services. A serious service down for a non-trivial period
often results in huge economic loss or other serious
consequences. For example, customers of a service
provider may turn to competing providers if the offered
services are not available.

Therefore, reducing the MTTR (Mean Time to Re-
store) of a service remains one the most important
steps to assure the user-perceived availability of the
service [2]. In order to reduce MTTR, a common
practice is to restore the service by identifying and
applying an appropriate healing action [3] (i.e., a tem-
porary workaround action, such as rebooting a SQL

machine) after the occurrence of an issue (e.g., an
unplanned interruption or degradation of the quality
of an online service). Then, after service restoration,
identifying and fixing of underlying root causes for the
issue are conducted via offline postmortem analysis. In
other words, directly applying of an appropriate healing
action for the issue wins time for offline diagnosis and
fixing of underlying root causes (which typically take
relatively longer time to resolve).

However, manually identifying an appropriate healing
action for a given new issue is time consuming and
error prone. Such manual process is based on investigat-
ing service-instrumented data such as transaction logs.
According to an internal study from an online service
team, about 90% time of MTTR is spent on manual
effort for identifying an appropriate healing action. Such
substantial manual effort is due to two factors. First,
investigating a large amount of service-instrumented
data is time consuming. Second, understanding the issue
and providing appropriate healing action are heavily de-
pends on domain knowledge.For example, each machine
in a real-world product online service (studied in our
evaluation in Section IV) produces about 6,000 lines
of transaction logs per minute on average. Operators
need to inspect these logs from several (usually 4 to
12) machines, and understand the symptom of the issue
by reading and reasoning the detailed log information.

To address high cost and error proneness of manually
identifying an appropriate healing action, in this paper,
we present an automated mining-based approach for
suggesting an appropriate healing action for a given
new issue. Our approach generates a signature for
an issue from its corresponding transaction logs and
then retrieves historical issues with similar signatures
from a historical issue repository. The historical issue
repository records the solved historical issues. Each
issue has a number of basic attributes: affected time,
affected location (e.g., specific cluster, network, or data-
center), real customer impact measurement, correspond-
ing transaction logs, etc., along with the appropriate



healing action taken by operators to heal the issue.
Finally, our approach suggests an appropriate healing
action by adapting healing actions of the retrieved
historical issues. In particular, our approach measures
the similarity between the transaction logs of the given
new issue and the transaction logs of a historical issue,
by addressing two major challenges due to the high-
correlation phenomenon and the weak-discrimination
phenomenon. The high-correlation phenomenon refers
to the correlation of event’s occurrences in transaction
logs for causing ineffective historical-issue retrieval.
The weak-discrimination phenomenon refers to noisy
events that appear relatively independent to the transac-
tion status (being in an issue state or compliant state).
Detailed examples for these phenomena are illustrated
in Section II.

To tackle challenges due to these phenomena, we
develop the technique of concept analysis to address
the high-correlation phenomenon and the technique of
contrast analysis to address the weak-discrimination
phenomenon. Then we define a novel similarity metric
to measure similarity between issues and retrieve similar
historical issues from the historical issue repository for
the given new issue. Finally, we develop a technique of
healing-suggestion adaptation to use predefined rules to
analyze and adapt the healing actions of the retrieved
historical issues to derive a healing suggestion for the
given new issue.

In particular, our technique of concept analysis uses
Formal Concept Analysis (FCA) to obtain the concept
lattice, where highly-correlated events are grouped to-
gether as the intents [4] of concepts. Our technique
of contrast analysis analyzes the complementary set of
events between concepts directly linked through the
obtained concept lattice. Such analysis produces the
complementary sets of events highly correlated to the
transaction status.

Our technique of healing-suggestion adaptation de-
fines the verb + target + location structure to represent a
healing suggestion. Both the verb + target are extracted
from the retrieved historical issues for the given new
issue, whereas the location is extracted from transaction
logs of the given issue directly. The verb denotes a
specific action from the healing action of the retrieved
historical issues, such as “recycle” and “restart”. The
target denotes a service role from the healing action
of the retrieved historical issues, such as “Application
Pool”, “IIS (Internet Information Service)”, and “SQL”.
The location denotes the affected location of the given
new issue, such as “Asia/Network2/Farm332/SQL412-
002”.

We have deployed our healing system on one online
service (serving millions of online customers globally)
for more than half a year. During this period, 76

operators in this product team effectively diagnosed and
healed this online service with the intensive assistance
of our healing system. Our evaluations on this real-
world online service demonstrate the effectiveness of
our approach in real practice.

To further evaluate the capability, and potential lim-
itations of our approach, we randomly sampled 400
real service issues, and carefully studied our results by
simulation. We found that our approach cannot work
properly at 157 (39%) issues. We summarize the under-
lying reasons, which shed lights towards service auto-
healing. In summary, this paper makes the following
main contributions 1:
• We formulate the problem of suggesting healing

actions for a newly occurred issue as retrieving
similar resolved issues in the history, and our tech-
niques of concept analysis and contrast analysis
help address challenges and achieve high accuracy
on historical-issue retrieval.

• We evaluate our approach on the 243 issues that
occurred in the real-world online service in 2012.
The results show that our approach can effec-
tively suggest correct healing actions to reduce the
MTTR of the service.

• We summarize our experience of applying our
approach on the real-world service, investigating
issue characteristics and cases where automatic
healing suggestion faces difficulties in practice.

The paper is organized as follows. Section II presents
examples. Section III presents our approach. Section IV
presents evaluation results. Section VI discusses related
work. Section VII concludes.

II. EXAMPLES

Transaction logs are printed during system execution.
Figure 1 shows a log stream collected for two exam-
ple transaction instances (within the occurring period
of an issue): the user-login transaction instance (the
highlighted log entries sharing the same transaction ID)
and file-editing transaction instance (the un-highlighted
log entries sharing the same transaction ID). Such logs
record relatively detailed information about run-time
behaviors of a system.

Each log entry (as shown in Figure 1) typically
consists of four fields. The log time indicates when
the log entry occurs. The event ID is used to identify
the corresponding logging statement in the source code.

1This paper significantly extends the previous version of this work
(a 4-page ASE 2012 short paper [5]) in three main ways. First,
we provide theoretical analysis to validate the effectiveness of our
approach. Second, we conduct concrete evaluations of our techniques
in a real product environment for over the year of 2012. Third, we
further investigate various types of issues that out current approach
fails on, shedding light on future directions of improvement.
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time event transaction ID message
02/08/2012…a 9d959c… Request # entering …
02/08/2012…b 9d959c… created cookie handler with…
02/08/2012…a 7d467b… Request $ entering …
02/08/2012…c 9d959c… cookie with name '*' was read …
02/08/2012…x1 7d467b… SQL server * failover detected…
02/08/2012…x1 7d467b… SQL server * failover detected…
02/08/2012…x2 7d467b… $ is not sign…
02/08/2012…x3 7d467b… Building authentication url
02/08/2012…d 9d959c… Site=/*/*/…
02/08/2012…x4 7d467b… attempt to create a sign…
02/08/2012…e 9d959c… Detected use of * from …
02/08/2012…b 7d467b… created cookie handler with…
02/08/2012…x5 7d467b… writing cookie of $ 
02/08/2012…x6 7d467b… cookie of $ was not present.
02/08/2012…y1 9d959c… SqlException: server * was not …
02/08/2012…z 9d959c… # leaving monitored scope of …
02/08/2012…x7 7d467b… $ does not require ssl.
02/08/2012…x8 7d467b… redirecting $ to …
02/08/2012…x2 7d467b… $ is not sign…
02/08/2012…z 7d467b… $ leaving monitored scope of …

Figure 1. Log stream for example transaction instances

ULS.Logging(
 0x12f3ce22 /* y1*/, Database, “{0}”, String.Format(CultureInfo.InvariantCulture,
“SqlException: ‘{0}’ was not found. Source: ‘{1}’ Procedure: ‘{2}’, LineNumber: ‘{3}’ …”));

Figure 2. Example logging statement in source code

Figure 2 illustrates the corresponding portion of source
code for event ID (in short as event throughout the
rest of the paper) y1, which describes that a SQL
exception has been thrown. The transaction ID is used
to identify the corresponding transaction instance. The
text message describes the detailed runtime information.

In addition, a transaction instance in an online service
system has one important attribute: http-status, used by
us to determine the transaction instance’s fail/success
label (see Section III.A.2 for details). The http-status
indicates the returned status of a given transaction in-
stance, e.g., “200” denoting “OK” while “500” denoting
“Internal Server Error”.

The event sequence collected for a transaction in-
stance can reveal part of the code path executed when
serving the transaction instance, e.g., revealing which
functions are executed. Figure 3 shows sequences of
events and their statistics for three transaction types
within the occurring period of an issue (including the
“file editing” and “user login” types for the two example
transaction instances shown in Figure 1 and the “file
reading” transaction type).

fail success
file editing a, b, c, d, e, y1, z 187 0

file reading a, b, c, d, e, z 0 485

transaction types sequence of event
# transactions

user login
a, x1, x1, x2, x3, x4, b, x5,

x6, x7, x8, x2, z
36 1

Figure 3. Log statistics for three transaction types within the
occurring period of an issue

By manually inspecting the information in Figure 3
for issue diagnosis, one could notice that the dominating
symptom for the issue is event y1 (indicating that
a SQL exception is thrown), because there are 187

failing transaction instances uniquely associated with
this event, in contrast to only 36 failing transaction
instances uniquely associated with events x1 – x8 in-
dicating that an invalid cookie is encountered. Then
one could suggest a healing action for this issue as
rebooting a SQL machine (a typical healing action for a
SQL-exception symptom), in contrast to restarting the
Internet Information Services (IIS) (a typical healing
action for an invalid-cookie symptom). However, if one
would like to develop mining algorithms to automate
this issue-diagnosis process, there exist two phenomena
on transaction logs for posing challenges.

High-correlation phenomenon. We observe that
some events always appear together, being highly cor-
related. The reason for such observation is that the
developers want to track execution states with finer
granularity at some critical statements, such as the
credential-verification session. Such tracked states cap-
ture sufficient logging information for diagnosis when
causes of issues are related to the execution of these
statements. For example, when event b appears, c, d,
and e always follow (see Figure 3). As another example,
events x1–x8 always appear together to indicate invalid
cookies. If we do not group them together when com-
paring event sequences for the given issue and historical
issues, events x1–x8 would contribute eight times than
event y1 to characterize the given new issue, likely
causing this given issue to be wrongly matched with a
historical issue with the dominating symptom as events
x1–x8. Such wrong matching would cause a wrong
healing action to be suggested.

Weak-discrimination phenomenon. Some events are
noisy, being weakly-discriminating events, whose ap-
pearance is independent of the transaction status (i.e.,
issue state or compliant state). Examples of such events
are a and z (in Figures 1 and 3) for indicating enter-
ing and leaving actions for each transaction instance,
respectively. These events appear in almost every trans-
action instance. Log messages corresponding to these
events contribute little to distinguish different types of
issues. Thus, due to such weakly-discriminating events,
retrieved historical issues for the given new issue may
not be desirable. For example, assume that another
different issue from the historical issue repository is
dominated by events a, b, d, y2, and z where “y2” is
related to “antivirus timeout”. If we do not address such
phenomenon, we would wrongly retrieve this historical
issue for the given issue related to SQL exception (since
the only difference of events for these two issues is “y1”
vs. “y2”.

III. APPROACH

Our approach consists of three steps. First, we use
concept analysis and contrast analysis to generate the
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{a, b, c, d, e , z}
F(187 ):S(485 )

Mutual-Information
M1=0.03

{a, b, c, d, e , z, y1}
F(187 ):S(0)

Mutual-Information
M2=0.11

{y1, DMI = M2-M1=0.08}

{a, b, z}
F(223 ):S(486 )

{a, b, z, x1 ~ x8}
F(36):S(1)

Parent Node

Child Node

Figure 4. Relationship between two linked concepts in the lattice

signature for an issue. Second, we retrieve historical
issues similar to the given new issue from an issue
repository based on their generated signatures. Third,
we produce healing suggestions by adapting the healing
actions of the retrieved historical issues.

A. Signature Generation

Our approach includes the techniques of con-
cept analysis and contrast analysis to address high-
correlation and weak-discrimination phenomena. Con-
cept analysis applies Formal Concept Analysis (FCA)
to group highly-correlated events together as the in-
tent of a concept. Contrast analysis calculates Mutual
Information to measure the correlation between each
concept and its corresponding transaction status, and
then evaluates the complementary set of intents between
parent and child concepts in concept lattice by measur-
ing their Delta Mutual Information (DMI). We generate
the signature for the issue as the complementary sets
that satisfy the predefined criterion.

1) Concept Analysis: In our problem, each transac-
tion instance corresponds to an event sequence. How-
ever, we ignore the information of temporal ordering
and event-recurrence count, and use an event set to
represent to each transaction instance. Although the
information of temporal order and event-recurrence
could indicates particular failure characteristic (e.g.,
race-condition, and iterating in a loop, respectively),
service issues relate to such information are very rarely
appeared in practice. So our simplification improves
efficiency, while preserve enough effectiveness. Then,
we group together highly-correlated events by apply-
ing FCA. The intuition is that highly-correlated events
together indicate one kind of symptom. FCA is a prin-
cipled way to automatically group such events together
[13].

Figure 4 illustrates two concept nodes from the
concept lattice, which is constructed from the logs in

Table I
JOINT DISTRIBUTION OF Xc , Y

Y = 1 Y = 0
Xc = 1 x y
Xc = 0 n− x m− y

Figure 3. The gray node in the middle of Figure 4 is
“file-editing” + “file-reading”, which is the parent to the
gray node in the bottom. More precisely, each concept
c contains a set of events, called the intent, denoted
by Int(c). The intent of a parent node always belongs
to the intent of its child (note that according to FCA
theory, the parent-child relationship is constructed by
such partial-order relation). In addition, the extent of
each concept is a set of transaction instances, denoted by
Ext(c). According to FCA theory, the event set belongs
to each transaction instance in Ext(c) shares the same
Int(c).

2) Contrast Analysis: By leveraging the fail/success
information of each transaction instance and the rela-
tionship between parent and child concepts, contrast
analysis finds the subset of the events that are highly
correlated to failed transaction instances. We next give
a definition about the fail/success label for a transaction
instance, and then present our considerations about
positive correlation and delta mutual information.

Fail/success label. We define the label for each
transaction instance (reflecting the transaction status) as

labeli =

{
failure, HttpStatusi ≥ 500

success, otherwise

where i denotes the index of a specific transaction
instance. Note that, although we use such specific
definition in our problem, it can be flexibly and easily
modified according to the different requirements of
different scenarios.

Positive correlation. We calculate mutual informa-
tion to measure the correlation between a concept and
failures.

Let x and y be the number of failed and succeeded
transaction instances for a given concept c, respectively;
let n and m be the total number of failed and succeeded
transaction instances within the occurring period of a
given new issue, respectively. Then we define a random
variable Y , which indicates the outcome (1 refers to
fail, and 0 refers to success) of a randomly selected
transaction instance; and another random variable Xc,
which indicates the outcome of a randomly selected
transaction instance belongs to Ext(c).

Then the outcomes x, y, n, m can approximately
represent the joint distribution of Xc and Y as illustrated
in Table I. In our approach, we adapt the formula of
mutual information as below (by dropping the < 10 >,
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< 01 > items):

M(Xc, Y ) = P (Xc = 1, Y = 1) log
P (Xc = 1, Y = 1)

P (Xc = 1)P (Y = 1)

+P (Xc = 0, Y = 0) log
P (Xc = 0, Y = 0)

P (Xc = 0)P (Y = 0)

Thus we use only the positive correlation part of
mutual information. In general, the negative correlation
( < 10 >, < 01 > items) happens trivially often in
network traces and are not meaningful [6].

Delta information. To achieve accurate retrieval, we
need to exclude noisy events and keep only “clean”
events. For example, in Figure 4, the mutual information
of the child node is high, but the events {a, b, c, d, e, z}
that it contains are irrelevant to the failures, and should
be eliminated. To address this problem, we analyze
Delta Mutual Information (DMI) between child and
parent concept nodes in the concept lattice, to measure
how the delta events contribute to correlation.

Let 4Es = Int(chi) \ Int(par) be the extra events
that the child node has, e.g., 4Es being {y1} in
Figure 4. Then we define

DMI(4Es) = M(Xchild, Y )−M(Xparent, Y )

Intuitively, DMI(4Es) represents the contribution
of the extra events 4Es for failure correlation. By
walking through each edge in the concept lattice graph,
we select 4Es as a term if it satisfies criteriaX:

criteriaX =

{
M(XInt(par), Y ) > 0

DMI(4Es) > 0

Intuitively, the first inequality indicates there exists a
positive correlation between a concept par and failure,
and the second inequality indicates there exists ”more”
failure-correlation due to the extra events that the child
node contains. In addition, Such definition of term
has a number of important properties. The theorem
below brings a bridge between our criteria and human’s
intuition when diagnosing the service issues.

Theorem DMI(4Es) ≈ ∂M
∂x 4x + ∂M

∂y 4y where
∂M
∂x > 0 and ∂M

∂y < 0.
Intuitively, let 4Es be a set of events which satisfy
criteriaX , then the higher value of the DMI(4Es)
means that events in “4Es appear more probably
(higher value of ∂M

∂x ) in failed requests, and less proba-
bly (lower value of ∂M

∂y ) in succeeded requests as well”.
We do not give the detailed proof in this paper due to
space limit. Readers can refer to our project website [7]
for the theorem and detailed proof. This property also
inspires us to develop a similarity measurement.

In the example in Figure 4, {y1} is a term, since
mutual information of the parent node is 0.03, and
the corresponding DMI is 0.08. Next, we use the

DMI(4Es) as the weight for term 4Es. So a sig-
nature Sissue is the collection of all the terms, which
can be represented as follows:

Sissue = {< 4Es, DMI(4Es) > |criteriaX = true}

B. Similar-Issue Retrieval

In similar-issue retrieval, we first need to have a
representation for issues and then define a similarity
to measure issue similarity so that the most similar
issue for the given new issue could be retrieved. We
implement the term-weighting and document-scoring
function of Generalized Variable kernel Similarity Met-
ric (GVSM [8]) to measure the defined similarity metric.

1) Issue Representing: We treat each issue in the his-
torical issue repository as one document, each signature
as a set of terms, and DMI as the weight of each term.
Let D = {d1, d2, ..., dm} be the total m documents in
the issue repository. Consider the given new issue as
a query, denoted as q. So we represent each document
di as

∑
p∈A(i)

wip~tp, where a term is represented by an

abstract vector ~tp, p is the index of the corresponding
term in di, A(i) is the valid index set, and wip is the
weight of ~tp. We use DMI as the weight for each
term. Such weight is much different from the TF-IDF
weight [9]. Our evaluations (Section IV) compare the
results of such difference.

2) Similarity Metric: We calculate the cosine score
of two document vectors, each representing one issue. In
particular, given a documents di that di =

∑
p∈A(i)

wip~tp.

We next define the similarity metric

sim(di, dj) =
di · dj
‖di‖‖dj‖

=

∑
p∈A(i),q∈A(j) wipwjq ~tp · ~tq

‖di‖‖dj‖

The metric measures the cosine of the angle be-
tween the two vectors. Here ‖di‖ =

√
di · dj . We

define inner product between two terms: ~tp · ~tq =
# of overlapped events in p-th term and q-th term.

We abandon the orthogonal assumption in the conven-
tional vector space model, since the orthogonal assump-
tion is too restrict (this assumption is also referred to as
exact-match: the inner product is equal to 1 if and only
if the two sets are exactly the same; otherwise, 0). We
aim to give a similarity score between 0–1 rather than
yes/no. We prove that our similarity metric satisfies the
requirements of GVSM, so our problem can be modeled
as a text retrieving problem, and we could leverage the
corresponding benefits due to the properties of GVSM.
We do not give the detailed proofs here due to space
limit. The detailed deductions can be viewed at our
project website [7].
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Table II
RULE-BASED MAPPING

verb target event of location
reboot SQL(Database) ev1
recycle App-Pool (Application Pool) ev2
restart IIS (Internet Information Service) ev2

re-image WFE (Web Front End) ev2
reboot WAC (Web Application) ev3
patch Service (SQL/WFE/WAC) ev1,ev2,ev3
restart Scanner (Anti-virus Component) ev2,ev3
restart Search (Search Component) ev3
restart AD (Active Directory) ev4

C. Healing-Suggestion Adaptation

We use a triple structure < verb, target, location >
to represent a healing action, and manually extract the
verb and target from the description of the historical
issue retrieved for the given new issue, and extract the
location from log messages of the given new issue. The
extracted healing actions are reasonably proper, since all
these issues are well-resolved, and the corresponding
healing actions have been verified according to the
incident management process from the product teams.

Based on empirical investigations of healing actions
for online service systems, we find that most healing
actions can be formatted as HealingAction = verb+
target+location. A verb is an action, such as “reboot”
and “re-image” (re-image: to completely replace the op-
erating system with a pre-configured image). The major
types of verbs in our problem setting are illustrated in
Table II. A target represents a component or a service
role, such as an Internet Information Services (IIS) or a
database, as illustrated in Table II. A location is an exact
affected machine name with its physical location. When
we retrieve a similar historical issue for the given new
issue, we obtain “verb” and “target” from the historical
issue, e.g., from the description text “We found few
SQL servers with high memory usage and few servers
were not able to connect through . Availability is back
up after rebooting the SQL machine SQL32-003”, we
extract the verb as “reboot” and the target as “SQL”.
The combination of a verb and a target is not arbitrary;
Table II shows all the possible combinations according
to our study.

We extract the location (the specific machine names)
with a rule-based technique. The specific machine name
is typically mentioned in the log messages associated
with a fixed set of events. For example, the log mes-
sage “Cannot connect to SQL server * ...” is always
associated with event ev1, so we find event ev1 from
logs and then extract * from the log message as location
by using regular expression. The complete mapping is
illustrated in Table II.

Note that manually identifying an appropriate healing
action for the given new issue is typically non-trivial
since not only identifying an appropriate healing action

Table III
CATEGORIES OF STUDIED HEALING ACTIONS

category ID verb target # of cases
ID1 recycle App-Pool 57
ID2 reboot WAC 57
ID3 restart IIS 43
ID4 reboot SQL 39
ID5 restart AD 31
ID6 re-image WFE 9
ID7 patch Service 3
ID8 restart Scanner 2
ID9 restart Search 2

needs high-confidence evidence but also there are totally
9 types of healing actions (as listed in Table II), which
could be instantiated to form a non-trivial number of
possible healing actions in the search space. Hence
inspecting our suggested healing action(s) (e.g., the
healing action identified from the top-k most similar
historical issues) could apparently reduce the time-cost
on the two aspects.

IV. EXPERIMENTAL EVALUATION

In our evaluations, we intend to answer three research
questions:
• RQ1. How effectively can our approach suggest ap-

propriate healing actions for the given new issues?
• RQ2. How well does our technique for addressing

the high-correlation phenomenon contribute to the
overall effectiveness of our approach?

• RQ3. How well does our technique for addressing
the weak-discrimination phenomenon contribute to
the overall effectiveness of our approach?

A. Experiment Setup

We evaluate our techniques in a released produc-
tion service, named ServiceX. ServiceX is a customer-
facing, geographically distributed, 24 x 7, 3-tier online
service, with five datacenters around the world. We next
describe the collection of trace data and definition of
evaluation metrics for our evaluations.

We randomly sampled 400 issues from the resolved
issues in the year of 2012. Among these issues, 243
issues are with clear resolutions and transaction logs,
and these issues are valid for our evaluations.

The healing actions for the 243 issues are categorized
into 9 categories based on the combination of their verb
and target information as shown in Table III. In the
categorization, we do not consider or list the location
information in the healing actions since it is different
across different issues.

1) System Topology: The ServiceX system includes
five datacenters. Each datacenter can be represented
by a hierarchical topology, with many “farms” as the
leaf node. Each farm is a unit of full functionality for
serving a set of customers, which contains servers of
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multi-roles (e.g., WFEs, SQLs). The transaction logs
of each individual server are temporarily stored in the
corresponding local machine for a certain period of
time (the detailed information cannot be exposed due
to Microsoft confidential). According to a topology-
manager, which maintains the mapping from logical
server role to the specific physical machine, we can
query the corresponding transaction logs by given a
specific server name. The service issues are triggered
by monitoring system (product teams used a set of
pre-defined rules to indicate the occurrence of service
issue, e.g., the average service availability less than 99
% for a continuous period of time) as well as real
customers. When an issue is triggered, it is sent to a
global historical issue repository named as RepX. Each
issue in RepX is associated with an issue ID, affected
farm, and time period, etc. Such associated information
is used to identify transaction logs for the issue.

2) Metrics: To comprehensively evaluate our ap-
proach, we design two-scenario strategies which mimic
the two major real usages of our technique. In both
scenarios, we in-turn treat each of the 243 issues (in
the order of their occurring time) as a “new issue”. But
the two scenarios differ in what issues we choose as the
“historical issues”.

In Scenario I, we reflect real usage of our approach
in practice by treating the previously encountered issues
(i.e., those that occurred before “new issue”) as the
“historical issues”. We then apply our approach for each
combination of “new issue” + “historical issues” and
then measure the accuracy of our approach’s effective-
ness in suggesting a correct healing action for the “new
issue”.

In Scenario II, we adopt the “leave-one-out” strategy
(a common strategy used in statistical analysis) by
treating all the remaining issues (other than the “new
issue”) as the “historical issues”. Scenario II is used for
building a knowledgebase which manages all historical
issues.

Note that in our results, the location info for a sug-
gested healing action is always correct for each issue,
because only an unhealthy service would produce ev1
– ev4 (see Table II). Therefore, the retrieval accuracy
is critical in the overall effectiveness of our approach:
if the healing action for the retrieved similar historical
issue for a “new issue” is in the same category as
the correct healing action for the “new issue”, then
the healing suggestion is correct (since the location
information of the healing action is assured to be correct
as described earlier).

3) Experiment Design: To answer the second and
third research questions, we apply two approaches (vari-
ants of our approach) in short as App1 and App2 besides
applying our approach in short as Ours. In App1, we

do not address the high-correlation phenomenon: we
calculate Mutual Information of each individual event as
its weight (using contrast info), then represent the events
as a vector, and finally calculate the cosine score as the
similarity metric value. In App2, we do not address the
weak-discrimination phenomenon: we first apply FCA
and use delta events between parent and child concepts
to define terms (using grouping information), use TF-
IDF as the weight of each term, and finally calculate
the cosine core as the similarity metric value.

Detailed Design of Scenario I: We design an
experiment that estimates the accuracy of top 1 similar
issue being retrieved by our approach to mimic one main
scenario when our technique is used in real practice.
We first sort all the issues by the occurring time from
the earliest to the latest. Then for each approach, we
initialize the score as zero. Then for each “new issue”
qi, we check the top 1 similar “historical issue” (here the
historical issues refer to the issues that occurred earlier
than qi) retrieved by our approach: if the retrieved “his-
torical issue” belongs to the same category of healing
actions as the “new issue”, we increase the score by one.
At the end of all iterations, for each qi, we can attain
an average score, which reflects the average accuracy of
healing suggestion at the time point of qi. We draw such
curve with X-axis being the index of the sorted issues
and Y-axis being the average accuracy at the time point
of the corresponding qi.

In Scenario I, we also evaluate the cost performance
of our approach. The runtime cost of our approach con-
sists of two parts: signature generation and retrieval. In
the part of signature generation, we apply our signature-
generation algorithm to only a new issue. After the
signature is generated, we store it into text indexed by
issue IDs. In practice, loading signatures of historical
issues is very fast, so we can ignore the loading time.
In the part of retrieval (i.e., similarity calculation), as the
number of historical issues grows, the time complexity
of this part grows linearly.

Detailed Design of Scenarios II: In our evalua-
tions, for each combination of each approach (Ours,
App1, and App2), each “new issue” qi selected from
healing-action category catk, and a given similarity
threshold s, we measure the precision for our approach’s
effectiveness in suggesting correct healing actions:

pre(qi, s) =
#retrivals in catk(similarity > s)

#retrievals(similarity > s)

Then we measure average precision for catk:

pre(catk, s) = average(pre(qi)),∀qi ∈ catk

We measure the average precision for all categories:

pre = average(pre(catk, s)),∀catk

7



0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250

Accuracy

Issue index

Accuracy of suggesting correct healing action
Ours
App1
App2

Figure 5. Accuracy of suggesting correct healing actions

In our evaluations, we set s from 0.6 to 0.995,
with 0.05 as each increment step. Then we get the
highest precision for our approach, App1, and App2,
respectively.

In our target problem, recall is not a useful metric,
since the decision of the final healing action is typically
not based on recall. According to the feedback from
engineers (short for product engineers, whose duties
are service diagnosis and recovering), they mainly care
about the retrieved candidates themselves, without car-
ing about the size of the categories that the specific
issues belong to, so we do not use recall as an important
metric.

B. Experiment Results

We next illustrate our experimental results of Scenar-
ios I and II, respectively.

1) Results of Scenario I: Experiments in Scenario
I address the accuracy of suggested healing actions
in real scenarios. Figure 5 shows the overall accuracy
trend for each approach. The X-axis is the index of
each issue (sorted by occurring time); the Y-axis is the
average accuracy of the issues between the first one and
the current one. Higher accuracy values indicate better
effectiveness.

RQ1: Approach Effectiveness: The overall accu-
racy of our approach, App1, and App2 is 87%, 82%,
and 72%, respectively. Achieving the best effectiveness,
our approach correctly suggests healing actions for 213
issues. Figure 5 shows the trend of the average accuracy:
the curve of our approach is always on top of curves of
App1 and App2.

Note that there are at least 9 issues for which wrong
healing actions would be suggested, since these issues
are the first issue of each of the total 9 categories, and
no previously encountered issue of the same category
is available for them to leverage. Such cases are repre-
sented by some points (e.g., the value of X-axis is 11,
17, 32) located at sharp drops in Figure 5.

Beside these 9 issues, our approach wrongly suggests
healing actions for 21 issues. We provide further inves-
tigation on these issues in Section IV.C.

The high accuracy of our approach is critical to
enable auto-healing tasks. Although currently service

Table IV
APP1 SUGGESTS CORRECT HEALING ACTIONS, WHEREAS OUR

APPROACH DOES NOT

Issue# Top1 Similarity (Ours) Top1 Similarity (App1)
153 0.02 0.27
178 0.24 0.24

Table V
OUR APPROACH SUGGESTS CORRECT HEALING ACTIONS,

WHEREAS APP1 DOES NOT

Issue# Top1 Similarity (Ours) Top1 Similarity (App1)
14 0.91 0.49
45 0.68 0.97
79 0.82 0.87
83 0.71 0.28
86 1.00 0.61
90 1.00 0.96
91 0.60 0.75
124 1.00 0.74

recovery heavily relies on manual efforts, product teams
are starting to deploy some scripts to apply healing
actions automatically, e.g., deploying a script in a
dedicated management machine to command the IIS
of a remote service to restart. We can then map our
suggested healing action to its corresponding script,
which is deployed to accomplish service auto-healing.

RQ2: Concept-Analysis Effectiveness: The blue-
colored (middle) curve in Figure 5 is for App1. Our
approach’s curve is on top of it at each value of X-axis.
App1 correctly suggests healing actions for 207 issues,
whereas our approach correctly suggests healing actions
for 6 more issues in total.

Table V and IV list all the issues with different
suggestions between our approach and App1 (including
the issues that our approach gives correct suggestions
but App1 does not, and those vice versa). There are 2
issues that App1 gives correct suggestions (the first 2
rows), and 8 other issues that our approach gives correct
suggestions (the last 8 rows).

To understand the reasons for such different sugges-
tions, we conduct further investigation. Table V and IV
further lists the top1 similarity score for each issue,
computed by our approach and App1, respectively. We
can observe that the 2 issues that App1 performs better
are trivial; the similarity score there is low: 0.27 is
the highest score. Such low score indicates that most
parts of the signatures between the current issue and
the top1 similar issue are not that similar (recall that
in the experiment design of Scenario II, we set the
similarity threshold to 0.6 as the lower bound). Further
investigation of the detailed log events and messages
confirms with such observation: in fact, the two issues
(#153 and #178) are “outliers” compared with other
issues, although correct healing actions are suggested
for them in the end.

On the other hand, all the 8 issues that our approach
performs better have at least 0.6 of top 1 similarity
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score, and most scores are even close to 1.0. Further
investigation of these issues confirms that the current
issue and the most similar issue are indeed related, App1
does not suggest correct healing actions because of its
main weakness: the bias of several terms of large size
(i.e., a signature consisting of a large number of events).

One typical example is the issues in category ID7,
each describing a specific service trouble named as
an “ADO.NET” issue. These results show that our
approach’s overall effectiveness benefits from address-
ing the high-correlation phenomenon. Dominating terms
(i.e., those with significantly larger weight than the other
terms of the same issue) of this category are {x} and
{y1 y2 y3 y4 y5}. When the execution of a transaction
instance goes through event {x} and {y1 – y5}, such
issue of a swift timeout can be reproduced. However, the
terms of many issues in the category of “SQL resource”
(ID4) are {z} and {y1 y2 y3 y4 y5}, with only one
event being different: “z” instead of “x”. Such difference
is small in quantity but is impactful. App1 can hardly
distinguish an issue from the category of “ADO.NET”
from an issue from the category of “SQL resource”, and
would report a high similarity score for these two issues,
leading to wrong healing suggestions. However, in our
approach, set {y1 – y5} contribute the same weight as
{x}, so the final similarity score would not be biased
by a specific term of large size. Note that the healing
actions for the two categories “ADO.NET” and “SQL
resource” are different, being patching a machine and
rebooting an SQL machine, respectively (see Table III).

RQ3: Contrast-Analysis Effectiveness: The green
colored (bottom) curve in Figure 5 is for App2. App2
correctly suggested healing actions for 174 issues, with
its accuracy as about 72%. Our approach improves the
accuracy of App2 by about 21%, which is substantial. In
summary, the evaluation result shows that, considering
contrast information (i.e., fail/success of each request)
substantially contributes to the overall accuracy of our
approach.

Runtime Performance of Our Approach: We gener-
ate the signatures of the total 243 issues with the runtime
cost of 45,848ms; thus, on average, we generate the
signature for each issue with the runtime cost of about
189ms.

Figure 6 shows the run time cost of retrieving the
top1 historical issue for each issue. The x-axis shows
the issue index, and the y-axis shows the time cost (with
unit as ms). We can see that the speed of processing
the first 150 issues is really fast (less than 50ms). As
the issue index grows, the runtime cost of the retrieval
grows, yet being still small (less than 250ms). Accord-
ing to the experiences from engineers, in practice, less
than 1 minute is already an acceptable bound for healing
services, since it is much less than the common MTTR

Figure 6. Overall performance of our approach
Table VI

OVERALL PRECISION

similarity threshold highest precision
Ours 0.85 0.87
App1 0.81 0.81
App2 0.94 0.58

(the actual value of MTTR of ServiceX is not exposed
due to Microsoft confidential).

The signature-generation part of App1 is 100 times
faster than the signature-generation part of our ap-
proach, since App1 calculates the mutual information of
only each individual event; however, the retrieval part
of our approach is 5 times faster than the retrieval part
of App1. One major reason is that our contrast analysis
eliminates most of irrelevant events; however, in App1,
the comparison of the new issue and a historical issue
can involve hundreds of unique events including many
irrelevant ones.

2) Results of Scenarios II: We use the similarity
threshold s as a parameter to get the pre s curve of each
approach. This part of evaluation complements to the
evaluation of Scenario I. To make the comparison fair,
we consider only the highest precision of each approach.

Table VI shows that the highest precision of our
approach is 0.87, with the corresponding similarity
threshold as 0.85. We can see that our approach also
performs the best compared to App1 and App2 in terms
of precision.

Note that high precision is very desirable for another
real scenario in practice. In particular, first, engineers
would like to set a similarity threshold. Then, after
a new issue occurs, they would like to see all the
possible historical issues (compared to the new issues)
with similarity exceeding this threshold. Finally, the
engineers inspect these retrieved historical issues and
make the final decision on which healing action to apply.
In this scenario, higher precision allows the engineers
to gain higher confidence in making decisions based on
the retrieved historical issues.

C. Experiences in Real Product

To make our approach more effective and better fit
into pipelines of service diagnostic in real production,
we investigate and record the issues or conditions where
our approach fails to suggest correct healing actions. We
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Table VII
ISSUES WHERE OUR APPROACH IS NOT APPLICABLE OR

FAILS
Inapplicable issues Issues our approach fails

Issue type Count Issue type Count
No logs available 78 (19.5%) one-shot issue 12
Service upgrade 31 (7.8%) logs not enough 4
Auto recovered 28 (7.0%) latency issue 3

False alarms 5 (1.3%) insufficient events 2
Other 15 (3.8%) Total 21

further improve our algorithm design and implementa-
tion based on some of these findings. In this section,
we discuss these experiences focusing the types of new
issues where our approach is not applicable and the
types of new issues where our approach fails to suggest
correct healing actions.

1) Issues Where Our Approach is Not Applicable:
We systematically and manually investigate the sampled
400 issues in RepX (see Section IV.A). Besides the
243 issues used in our evaluations, the remaining 157
(39%) issues do not satisfy our input requirements. The
statistics on types of these issues are listed in the left-
hand side of Table VII. We next illustrate the four main
types of issues.

The type of “No logs available” describes the issues
where we cannot collect corresponding transaction logs
anywhere. The underlying reasons vary: some were due
to network issues, so the user requests did not reach the
application service; some were due to changes of the
topology in the system, so that the alerted service no
longer existed when engineers started the investigation.

The type of “Service upgrade” describes issues that
are “noisy” issues alerted during system upgrade, i.e.,
the monitoring system was not shut down in time when
the service upgrade began. Engineers would just leave
a note of “this is trivial alarm that don’t need to inves-
tigate” and close it, so we cannot obtain corresponding
healing actions.

The type of “Auto recovered” describes issues that
were automatically recovered before engineers started
the investigation.

The type of “False alarms” describes issues that were
filed due to cases not related to real service issues, e.g.,
some internal testing bugs were wrongly filed as service
issues by mistake.

2) Issue Where Our Approach Fails: We study the
21 issues that our approach does not suggest correct
healing actions, and categorize them in the right-hand
side of Table VII.

The type of “one-shot issue” (12 issues) describes
issues with unique signatures, which are not similar to
the signatures of any other issues (each of the 12 issues
is not similar with each other either). According to the
feedback on these issues from engineers, the logs of
these issues provide useful information for diagnosis,

and the signatures that our approach generates are still
valuable to the engineers in diagnosis. Our approach
fails on these issues because there exist no similar
historical issues for these issues.

The type of “logs not enough” (4 issues) describes
issues with log information insufficient for diagnosis.
Engineers did not identify the root causes by inspecting
these logs, and our approach does not generate helpful
signatures either. According to the discussion with en-
gineers, the logging was not sufficient when the system
executed the code paths that lead to these 4 issues. On
the other hand, 4 is a small number, implying that the
current logging practice is generally good enough.

The type of “latency issue” (3 issues) describes issues
where the user requests are processed with suspiciously
long time, but are still processed successfully. Users
would feel unhappy about such slow response; however,
our approach cannot handle such long-latency issues
well, because the unhappy (long-latency) code paths
are not different to the happy (fast) code paths, and
no events for these two cases are discriminative.

The type of “insufficient events” (2 issues) describes
issues that are associated with insufficient events. Using
only events or event sets associated with these issues
cannot well discriminate the issues with other issues.
More information from log messages should be lever-
aged to generate more proper signatures. For example,
from the system’s source code, there is one event
generated for indicating the overall general exception
handling at the last stage of request processing. If the
request fails, there could be various exception types to
indicate different system failures, which could lead to
different healing actions. So using only this event can-
not well discriminate different issues. However, since
the exception information is recorded in the message
column, our approach’s effectiveness can be improved
by simply combining the event with its partial message
to construct a more useful new event.

D. Threats to Validity

The threats to external validity primarily include the
degree to which the studied online service, its issues,
its usages, etc. are representative of true practice. The
studied online service is a real-world product online
service that serves millions of customers globally. The
investigated issues and service usages come from real-
world cases. These threats could be reduced by more ex-
periments on wider types of subjects in future work. The
threats to internal validity are instrumentation effects
that can bias our results. Faults in our healing system
might cause such effects. To reduce these threats, we
manually inspected trace data and our system outputs
for a number of issues.
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V. REAL CASE STUDIES

In this section, we select two typical real issues oc-
curred in one online service system, to demonstrate the
effectiveness and potential capability of our approach.
Antivirus Configuration Corruption.
ServiceX experienced continuous performance problem
in one datacenter in January of 2012. During the oc-
currence of this issue, customers experienced both slow
response and failed to upload files in an unpredictable
fashion. Operators who first diagnosed this issue found
that one Web Front End (WFE), named WFEx, “pro-
duced” most http-status = 500 failures. Since each
transaction instance randomly selected one WFE to
be served due to the load-balancing strategy, only the
transaction instances that go through WFEx would have
a high probability to fail. The operators asserted that
WFEx went into a bad state, so they rebooted it after
investigation. However, such rebooting action did not
turn back the service availability, and the same issue
existed continuously. After involving senior experts,
they finally found the root cause of the issue to be
that the “configuration file for antivirus software became
corrupted after a random restart”. In the end, the only
resolution was to re-image.

Resolving this issue is challenging, involving 12
experts in different relevant teams and with mail discus-
sion in about two weeks to find the root cause by inves-
tigating various logs of different components/features.
This issue is also a tricky one since people usually re-
boot a WFE after general diagnosis. Our approach finds
the symptoms (denote as ACC: Antivirus Configuration
Corruption) “antivirus timeout” (which led to “Internal
Server Error”, reflecting that users failed to upload files)
and “SQL failing over detected” (which led to long
latency, reflecting that users felt slow response) on only
WFEx. We recorded this issue in the repository. On
early February, 2012, a new issue X occurred in another
farm of the same datacenter, our approach retrieved the
historical issue with ACC as the most similar issue, with
the similarity score of 0.96. Guided by the information
of the historical issue and its healing suggestion, the op-
erator, who was not familiar with this issue, immediately
moved to check the antivirus configurations instead of
rebooting the WFE (a common healing action). Our
approach helped reduce much investigation time of
the operator by providing informative diagnostic clues.
After repeated occurrences of such issue with the ACC
symptom, the issue was finally marked as a “need fix”
issue of antivirus software, and is to be fixed in the
future upcoming service upgrade.
False Alarms of Monitoring System.
We provide another interesting story that occurred after
we conducted the evaluation. This story demonstrates

that not only the healing actions, but also the informa-
tion about descriptions and diagnostic steps of similar
historical issues could be leveraged to help investigate
current issues.

Starting from early July of 2012 till the end of the
month, the monitoring system of ServiceX sent out
120 specific types of alarms (service issues). These
issues were not easy to diagnose. According to the
email discussion from the involved operators, and also
the information recorded in the issue repository, the
involved operators did observe some new suspicious
transaction logs in the effected machine; however, these
machines seemed running healthily without any ab-
normal behavior. To be conservative, operators had to
inspect the potential dependent machines one by one.
After hours of investigation, operators had no findings,
and had to temporally tag “no clue, postponed” to the
issue in the issue repository.

This challenging issue had been resolved about three
weeks later with more than ten experts involved. The
root cause was that the monitoring system reported a
lot of false alarms due to the incompatible versions of
components (of the monitoring system) after the previ-
ous upgrade. All the 120 false issues were then marked
as “duplicated” in the repository. Similar issues never
occurred again after the subsequent service upgrade.

We captured and replayed the whole story by sim-
ulation. According to our simulation study, we found
that if the first three issues (which recorded detailed
descriptions and diagnostic steps, and occurred in the
first two days) were labeled as a similar group, all the
remaining 117 issues could be retrieved correctly (i.e.,
for each unlabeled issue, the most similar one is one
of the three, and with the similarity-metric value >
0.90). Although there were no healing actions associated
with these issues, the rich information of the previous
investigations (i.e., those for the first three issues) can
substantially reduce redundant efforts for diagnosing the
large number of recurrent issues.

VI. RELATED WORK

We discuss related work in the areas of system diag-
nosis, fault detection, and mining software repositories.

System diagnosis. Cohen et al. [10] propose that re-
trieving a previously solved and annotated issue similar
to the given new issue may help identify the root cause
or fixing action for the given issue when the retrieval is
accurate. In contrast, rather than aiming to fix the issue,
our work aims to provide healing suggestion to reduce
MTTR by leveraging historical issues. Yuan et al. [11]
use classification techniques to classify issues into dif-
ferent categories. In contrast, our work does not require
specific labeling but retrieves similar historical issues
for adapting their healing actions as suggested healing

11



actions for the given issues. Previous work [12], [13]
on automated diagnosis of distributed systems uses two
types of trace data for analyzing system performance:
system metrics/events and transaction logs. Our work
requires only transaction logs for signature generation
and healing suggestion.

Fault localization. Our technique used to generate
signature from transaction logs shares a similar high-
level concept with the fault-localization technique pro-
posed by Liu et al. [14]. Sun et al. [15] evaluate patterns
mined from both correct and incorrect runs to detect
duplicate bug reports. Our work uses contrast informa-
tion for achieving high accuracy of signature generation.
Cellier [16] applied FCA for fault localization by using
concepts to find interesting clusters. In contrast to these
previous techniques on fault localization based on cov-
erage information, our work is motivated by addressing
challenges posed by characteristics of transaction logs.

Mining bug repositories. When a new software fault
is reported, operators usually use a web search engine
to search for the text of error messages or console
messages for diagnosis. The essence of such scenario
remains when the web search engine is replaced by a
search engine for a bug repository. Ashok et al. [17]
implement a search tool to speed up bug fixing by
leveraging natural language text, dumped traces, and
bug output. Some other work [15], [18] uses mining
or classification techniques on textual information to
cluster or detect duplicate bug reports. These techniques
would not be effective in our problem setting because
the textual information in a typical historical issue
repository is incomplete or imprecise.

VII. CONCLUSION

To effectively reduce the MTTR of a service, we
have proposed an automated mining-based approach for
suggesting an appropriate healing action for a given
issue. Our approach suggests an appropriate healing
action by adapting healing actions for the retrieved
similar historical issues. Our studies on a real-world
product online service show that our approach can
effectively provide appropriate healing actions to reduce
the MTTR of the service.
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